A new measure for assessment of clustering based on kernel density estimation

نویسندگان

چکیده

A new clustering accuracy measure is proposed to determine the unknown number of clusters and assess quality a data set given in any dimensional space. Our validity index applies classical nonparametric univariate kernel density estimation method interpoint distances computed between members data. Being based on distances, it free curse dimensionality therefore efficiently computable for high-dimensional situations where study variables can be larger than sample size. The compatible with algorithm every kind distance defined have function. conducted simulation proves its superiority over widely used cluster indices like average silhouette width Dunn index, whereas applicability shown respect Biostatistical Alon large Astrostatistical application time series light curves variable stars.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation

The Denclue algorithm employs a cluster model based on kernel density estimation. A cluster is defined by a local maximum of the estimated density function. Data points are assigned to clusters by hill climbing, i.e. points going to the same local maximum are put into the same cluster. A disadvantage of Denclue 1.0 is, that the used hill climbing may make unnecessary small steps in the beginnin...

متن کامل

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Information Theoretic Clustering using Kernel Density Estimation

In recent years, information-theoretic clustering algorithms have been proposed which assign data points to clusters so as to maximize the mutual information between cluster labels and data [1, 2]. Using mutual information for clustering has several attractive properties: it is flexible enough to fit complex patterns in the data, and allows for a principled approach to clustering without assumi...

متن کامل

Edge Detection based on Kernel Density Estimation

Edges of an image are considered a crucial type of information. These can be extracted by applying edge detectors with different methodology. Edge detection is a vital step in computer vision tasks, because it is an essential issue for pattern recognition and visual interpretation. In this paper, we propose a new method for edge detection in images, based on the estimation by kernel of the prob...

متن کامل

On Potts Model Clustering, Kernel K-means, and Density Estimation

Many clustering methods, such as K-means, kernel K-means, and MNcut clustering, follow the same recipe: (1) choose a measure of similarity between observations; (ii) define a figure of merit assigning a large value to partitions of the data that put similar observations in the same cluster; (iii) optimize this figure of merit over partitions. Potts model clustering, introduced by Blatt, Wiseman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics

سال: 2022

ISSN: ['1532-415X', '0361-0926']

DOI: https://doi.org/10.1080/03610926.2022.2032168